Search results for "thermal stratification"
showing 3 items of 3 documents
The Impact of the Changing Climate on the Thermal Characteristics of Lakes
2009
Meteorological forcing at the air-water interface is the main determinant of the heat balance of most lakes (Edinger et al., 1968; Sweers, 1976). Year-to-year changes in the weather therefore have a major effect on the thermal characteristics of lakes. However, lakes that differ with respect to their morphometry respond differently to these changes (Gorham, 1964), with deeper lakes integrating the effects of meteorological forcing over longer periods of time. Other important factors that can influence the thermal characteristics of lakes include hydraulic residence time, optical properties and landscape setting (e.g. Salonen et al., 1984; Fee et al., 1996; Livingstone et al., 1999). These f…
Enhancing the retrieval of stream surface temperature from Landsat data
2019
International audience; Thermal images of water bodies often show a radiance gradient perpendicular to the banks. This effect is frequently due to mixed land and water thermal pixels. In the case of the Landsat images, radiance mixing can also affect pure water pixels due the cubic convolution resampling of the native thermal measurements. Some authors recommended a general-purpose margin of two thermal pixels to the banks or a minimum river width of three pixels, to avoid near bank effects in water temperature retrievals. Given the relatively course spatial resolution of satellite thermal sensors, the three pixel margin severely restricts their application to temperature mapping in many ri…
Increasing air temperature relative to water temperature makes the mixed layer shallower, reducing phytoplankton biomass in a stratified lake
2023
The depth of the mixed layer is a major determinant of nutrient and light availability for phytoplankton in stratified waterbodies. Ongoing climate change influences surface waters through meteorological forcing, which modifies the physical structure of fresh waters including the mixed layer, but effects on phytoplankton biomass are poorly known. To determine the responses of phytoplankton biomass to the depth of the mixed layer, light availability and associated meteorological forcing, we followed daily changes in weather and water column properties in a boreal lake over the first half of a summer stratification period. Phytoplankton biomass increased with the deepening of the mixed layer …